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Abstract

This work is focused on the numerical study of steady, laminar, conjugate natural convection around a finned pipe placed in the center
of a square enclosure with uniform internal heat generation. Four perpendicular thin fins of arbitrary and equal dimensions are attached
to the pipe whose internal surface is isothermally cooled. The sides of the enclosure are considered to have finite and equal thicknesses
and their external sides are isothermally heated. The problem is put into dimensionless formulation and solved numerically by means of
the finite-volume method. Representative results illustrating the effects of the finned pipe inclination angle and fins length on the stream-
lines and temperature contours within the enclosure are reported. In addition, results for the local and average Nusselt numbers are pre-
sented and discussed for various parametric conditions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

During the last four decades, significant attention was
given to the study of natural convection in enclosures sub-
jected to simultaneous volumetric internal heat generation
and external heating or cooling. This was due to the occur-
rence of natural convection in a wide range of application
areas that include nuclear reactor design, post-accident heat
removal in nuclear reactors, geophysics and underground
storage of nuclear waste, energy storage systems and others.

Natural convection heat transfer in enclosures contain-
ing heat generating fluids with different geometrical param-
eters and boundary conditions has been extensively
considered in the open literature. Steinberner and Reinke
[1] performed experiments with a rectangular geometry
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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and both upper and lower walls being cooled for RaI vary-
ing from 5 � 1010 to 3 � 1013. Based on a numerical mod-
eling effort, they developed correlations for the Nusselt
number. Kulacki and Goldstein [2] experimentally mea-
sured heat transfer from a plane layer containing internal
energy sources with equal boundary temperature. Lee
and Goldstein [3] performed a laboratory experiment sim-
ilar to that performed by Kulacki and Goldstein [2] but
they employed an inclined square enclosure. Acharya and
Goldstein [4] presented a numerical solution of natural
convection in an externally heated square box of different
aspect ratios and containing internal energy sources. Their
study covered RaI from 104 to 107 and RaE from 103 to 106,
and an enclosure inclination angle from 30� to 90�. They
found that the flow pattern is related to the ratio RaE/
RaI. Emara and Kulacki [5] reported a numerical study
of thermal convection in a fluid layer driven by with
uniform volumetric energy sources. The sides and lower
surfaces of the rectangular domain were adiabatic walls

mailto:abdnakhi@yahoo.com


Nomenclature

A enclosure aspect ratio
d internal diameter of the pipe (m)
D dimensionless internal diameter of the pipe =

d/H
g gravitational acceleration (m/s2)
Gr Grashof number = gb(Th � Tc)H

3/m2

k thermal conductivity (W/m K)
l fin length (m)
L dimensionless fin length = l/H
n distance normal to s-axis (m)
N dimensionless n-coordinate = n/H
Nu local Nusselt number at solid–fluid interface
Nu average Nusselt number
p fluid pressure (Pa)
P dimensionless pressure of fluid ¼ p

q
H
af

� �2

Pr Prandtl number = m/af

q rate of internal heat generation per unit volume
(W/m3)

RaE external Rayleigh number = gb(Th � Tc)H3/(am)
RaI internal Rayleigh number = gbqH5/(amk)
RaEI external to internal Raleigh numbers ratio =

RaE/RaI

s coordinate adopted for distance along solid–
fluid interfaces (m)

S dimensionless s-coordinate = s/H
T temperature (K)
u x-component of velocity (m/s)
U dimensionless X-component of velocity = uH/af

v y-component of velocity (m/s)
V dimensionless Y-component of velocity = vH/af

w thickness of solid item (m)

x horizontal distance (m)
X dimensionless horizontal distance = x/H
y vertical distance (m)
Y dimensionless vertical distance = y/H
z total length of the interface between the fluid

and the finned pipe (m)
Z dimensionless z = z/H

Greek symbols

e thin fin inclination angle (�)
a thermal diffusivity (m2/s)
b thermal expansion coefficient (1/K)
j solid-to-fluid thermal conductivity ratio = ks/kf

m kinematic viscosity (m2/s)
h dimensionless temperature = (T � Tc)/(Th � Tc)
q density (kg/m3)
x dimensionless thickness of solid item = w/H
W stream function (m2/s)
w dimensionless stream function = W/af

$2 Laplacian operator

Subscripts

c cold surface
e enclosure wall
f fluid
fin fin
fp finned pipe
h heated surface
in internal surface of the pipe
p pipe
s solid
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and the upper surface was either rigid or free isothermal
boundary. Rahman and Sharif [6] conducted a numerical
investigation for free convective laminar flow of a fluid
with or without internal heat generation (RaE = RaI =
2 � 105) in rectangular enclosures of different aspect ratios
(from 0.25 to 4), at various angles of inclination, of insu-
lated side walls, heated bottom, and cooled top walls. They
observed that for RaE/RaI > 1, the convective flow and
heat transfer was almost the same as that in a cavity with-
out internal heat generating fluid. Kawara et al. [7] exper-
imentally studied natural convection in a differentially
heated vertical fluid layer of Pr = 5.85 with internal heat-
ing. Fusegi et al. [8] reported a numerical study on natural
convection in square cavity with uniform internal heat gen-
eration and differentially heated vertical sidewalls. Fusegi
et al. [9] also generated results for the same problem but
for a rectangular cavity of different aspect ratios. Fusegi
et al. studies [8,9] involved high external and internal Ray-
leigh numbers as RaE = 5 � 107 and RaI varied from 109 to
1010. Their results agreed with the experimental results of
Kawara et al. [7]. Oztop and Bilgen [10] numerically stud-
ied a differentially heated, partitioned, square cavity con-
taining a heat generating fluid. The vertical walls were
isothermal while the horizontal walls were adiabatic and
an isothermal cold partition was attached to the bottom
wall. The external and internal Rayleigh numbers (i.e.
RaE and RaI) ranged from 103 to 106. They observed two
distinct flow regimes based on on the ratio RaE/RaI. Shim
and Hyun [11] presented the time-dependent behavior of
natural convection in a differentially heated square cavity
due to impulsively switched on uniform internal heat
generation. They concluded that the transient behavior is
dependent on RaI/RaE and based on its value, three flow
stages were distinguished. Baytas [12] investigated the effect
of the uniformly distributed sinusoidal heat source genera-
tion on the fluid flow and heat transfer within a two-dimen-
sional square cavity. Liaqat and Baytas [13] studied
conjugate natural convection in a square enclosure
containing uniform volumetric sources and having thick
conducting walls. They illustrated the importance of per-
forming conjugate investigations instead of conventional
non-conjugate analyses.
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The purpose of the present work is to study conjugate
natural convection inside a square enclosure with uniform
internal heat generation and having a finned pipe in its cen-
ter. The enclosure walls are assumed to be uniformly con-
ductive of equal thicknesses and their external sides are
isothermally heated. The finned pipe has four perpendicu-
lar fins of uniform thickness and conductivity, and its inter-
nal surface is cooled isothermally. The effects of finned pipe
orientation and fins length on the flow and heat transfer
characteristics are studied.

2. Mathematical model

Consider steady laminar, two-dimensional, conjugate
natural convection with uniform internal heat generation
around a motionless finned pipe placed in the center of a
square enclosure bounded by uniform thick walls, as
shown in Fig. 1. The internal surface of the pipe is isother-
mally cooled and maintained at a temperature Tc while the
external surface of the thick walls is kept at a uniform hot
temperature Th. The bounded fluid is assumed to be incom-
pressible, viscous, and Newtonian having constant thermo-
physical properties. The effect of viscous dissipation and
radiation heat transfer are negligible. The acceleration
due to gravity acts in the vertical downward direction. It
will be further assumed that the temperature differences
in the domain under consideration is small enough to jus-
tify the employment of the Boussinesq approximation
and the neglect of the radiation effects. It is worth noting
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Fig. 1. Schematic diagram and coordinate system for a square en
that the depth of the current geometry is long enough so
that a two-dimensional assumption is justified.

The governing equations for this problem are based on
the balance laws of mass, linear momentum and energy.
Although the current study is concerned with the steady
state behavior, the transient mathematical model is
employed in order to overcome the instabilities associated
with internal heat generation. Taking into account the
assumptions mentioned above, and applying the Bous-
sinesq approximation for the body force terms in the
momentum equations, the governing equations for the
fluid region of the domain can be written in dimensionless
formulation as:

oU
oX
þ oV

oY
¼ 0 ð1Þ
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For the solid regions,

oh
os
¼ r2h ð5Þ

In writing Eqs. (1)–(5), the following dimensionless param-
eters and definitions are used.
se

ε
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x

we

p

closure with inclined finned pipe at the center of the cavity.
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X ¼ x
H
; Y ¼ y

H
; s ¼ at

H 2
; U ¼ u

H
a

V ¼ v
H
a
; Pr ¼ m

a
; h ¼ ðT � T cÞ

ðT h � T cÞ

RaE ¼
gbðT h � T cÞH 3

am
; RaI ¼

gbqH 5

amk
ð6Þ

where the dimensionless parameters appearing in the above
equations are given in the Nomenclature list.

Motionless fluid (i.e. U = V = 0), P = 0, and cold iso-
thermal state (i.e. h = 0) are assumed as initial condition
(i.e. s = 0). The physical boundary conditions can be writ-
ten as

at all solid–fluid interfaces U ¼ V ¼ 0 ð7aÞ

in the solid regions U ¼ V ¼ P ¼ 0 ð7bÞ

at finned pipe–fluid interface
ohf

oN fp

¼ jfp

ohfp

oN fp

� �
ð7cÞ

at internal surface of the pipe h ¼ 0 ð7dÞ

X ¼ 0 or 1þ 2xe h ¼ 1 ð7eÞ

X ¼ xe or 1þ xe;

xe < Y < 1þ xe

oh
oX

� �
f

¼ je

oh
oX

� �
e

ð7fÞ

Y ¼ 0 or 1þ 2xe h ¼ 1 ð7gÞ

Y ¼ xeor1þ xe;

xe < X < 1þ xe

oh
oY

� �
f

¼ je

oh
oY

� �
e

ð7hÞ
Fig. 2. Comparison of stream functions and iso
The stream function can be defined in the usual way as

v ¼ � oW
ox

; u ¼ oW
oy

ð8aÞ

w ¼ W
af

ð8bÞ
The local Nusselt number for the solid–fluid interfaces is
given by:

Nue ¼
oh
oN e

� �
N e¼0

ð9aÞ

Nufp ¼
oh

oN fp

� �
N fp¼0

ð9bÞ
The average Nusselt number at the three boundaries is
examined in the current study, two of which are internal
and one is external with respect to the computation do-
main. The two internal boundaries are the enclosure
wall–cavity interface and the finned pipe–cavity interface.
The average Nusselt number for the former boundary is
Nue and Nufp is for the latter boundary. The third boundary
is at the internal surface of the finned pipe, for which aver-
age Nusselt number is Nuin. The three average Nusselt
numbers are given by:

Nue ¼
1

4

Z 4

0

oh
oN e

� �
N e¼0

dSe ð10aÞ
therms with those of Shim and Hyun [11].
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Nufp ¼
1

Z

Z Z

0

oh
oN fp

� �
N fp¼0

dSfp;

Z ¼
2p wp þ d

2

� �
H

þ 8L ð10bÞ

Nuin ¼
1

pD

Z pD

0

oh
oN in

� �
N in¼0

dSin ð10cÞ

where S = s/H and s is coordinate adopted for distance
along solid–fluid interfaces. As shown in Fig. 1 se and sfp

advance counter clockwise, while sin proceeds clockwise.
N = n/H where n is the distance locally normal to s-axis.
These coordinates are defined in such a way to produce po-
sitive Nu when the fluid inside the cavity is losing heat.
3. Numerical algorithm

The governing Eqs. (1)–(5) for steady, laminar, two-
dimensional conjugate natural convection heat transfer in
a square enclosure subjected to its corresponding boundary
conditions Eqs. (7a)–(7h) are solved using the Gauss–Seidel
point-by-point method as discussed by Patankar [14] along
Fig. 3. Comparison of stream functions and iso
with under-relaxation factors for h, U, V, and P. The pres-
sure-velocity coupling is resolved using the SIMPLEC
algorithm [15]. The convective terms were approximated
by the second-order upwind discretization scheme and
the diffusive terms with the central differencing scheme.
The convergence criterion employed was the standard rela-
tive error, which is based on the maximum norm given by

D¼max
khm�hm�1k1
khmk1

;
kU m�U m�1k1
kUmk1

;
kV m�V m�1k1
kV mk1

;
kP m�P m�1k1
kP mk1

� 	

6 10�8

ð11Þ

where the operator kgk1 indicates the maximum absolute
value of the variable over all the grid points in the compu-
tational domain, and m and m � 1 represent the current
and previous iterations, respectively.

An unstructured grid of tri-angular mesh elements was
employed in the current work. Approximately of 14,500
nodes were used in the model as the total number of nodes
used depends on the fin length and inclination angle. The
Aspect Ratio and Skewness of the mesh cells have significant
therms with those of Oztop and Bilgen [10].
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impact on the accuracy of the numerical solution. In the
current work, the mesh quality of the numerical model
was analyzed by means of Aspect Ratio, EquiAngle Skew,
and Equisize Skew of each cell within the domain. The
aspect ratio is defined by

QAR ¼ 0:5
R
r

P 1:0 ð12Þ

where r and R represent the radii of the circles that inscribe
and circumscribe, respectively, the mesh element. For the
Present results 
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Fig. 4. Comparison of dimensionless temperature
range of fin lengths and inclination angles employed in
the current study, about 96% of the cells have
1.0 6 QAR 6 1.09 where QAR = 1.0 describes an equilateral
element.

The EquiAngle Skew is a normalized measure of skew-
ness that is defined as follows:
QEAS ¼ max
Umax � 60

120
;
60� Umin

60

� 	
ð13Þ
Dong and Li [18] 

 0.4, C = 0.2, and κ = 0.1 

 0.4, C = 0.2, and κ = 1.0 

 0.4, C = 0.2, and κ = 5.0 

distribution with those of Dong and Li [18].



Fig. 5. Effects of L and jfp on the contour maps of the streamlines and isotherms for e = 0, RaE = 105, and RaI = 107.
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where Umax and Umin are the maximum and minimum
angles (in degrees) between the edges of the triangular
cell. Accordingly, 0.0 6 QEAS 6 1.0 where QEAS = 0.0
describes an equilateral element, and QEAS = 1.0 describes
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a completely degenerate (poorly shaped) element. Around
90% of the cells have 0.0 6 QEAS 6 0.13 and 96% of the cells
have 0.0 6 QEAS6 0.24. In general, high-quality meshes
contain elements that possess QEAS values not exceeding
0.25. The EquiSize Skew (QESS) is a measure of skewness
that is defined as follows:

QESS ¼
neq � n�

neq

ð14Þ

where n* is the area of the triangular cell, and neq is the
maximum area of an equilateral triangular cell the circum-
scribing radius of which is identical to that of the mesh ele-
ment. Accordingly, 0.0 6 QESS 6 1.0 where QESS = 0.0
describes an equilateral element, and QESS = 1.0 describes
a completely degenerate (poorly shaped) element. Above
80% of the cells have 0.0 6 QEAS 6 0.01 and around 96%
of the cells have 0.0 6 QAR 6 0.1. In general, high-quality
meshes contain elements QESS values of 0.1 or less. In the
present work, all requirements for high quality meshes
are satisfied.

In order to reduce round-off errors, double precision
computation was employed. The accuracy of the numerical
scheme is validated by means of several inter-model com-
parisons. First, the average Nusselt number Nu obtained
by the adopted numerical scheme for a differentially-heated
square enclosure consisting of three thin sides and one
thick vertical wall under various Grashof numbers was
compared against those reported by Kaminski and Prakash
[16] and Liaqat and Baytas [13], The results were exactly
similar for most of the cases and the maximum deviation
from the results reported by Kaminski and Prakash [16],
and Liaqat and Baytas [13] were 1.25% and 0.7%, respec-
tively. The detailed results are reported by Ben-Nakhi
and Chamkha [17]. The second validation test is performed
by a comparison against the results presented by Shim and
Hyun [11] who considered transient natural convection in
square cavity with internal heat generation. Good agree-
ment was achieved as can be seen from the streamline
and temperature contours and extreme values in Fig. 2
for s = 0.1, Pr = 0.7, RaE = 105, and RaI = 106 and 107.
In the third validation test, acceptable conformity was
attained when the contour maps of the streamlines and
isotherms for some of the cases reported by Oztop and
Bilgen [10] were regenerated as shown in Fig. 3 for
Pr = 0.71, l/h = 0.5, wf/h = 0.01, and three combinations
of RaE and RaI. The fourth verification practice was
performed against results for comparable geometry pro-
duced by Dong and Li [18], who considered conjugate
natural convection around a pipe centered in a square
enclosure. Excellent agreement was achieved for Pr = 0.7,
Ra = 104, A = 1, D = 0.4, x = 0.2, and j = 0.1, 1.0, and
5.0. Due to space limitation only dimensionless tempera-
ture distribution along three boundaries are presented in
Fig. 4. These various favorable comparisons lend confi-
dence in the numerical results to be presented in the next
section.
4. Results and discussion

In this section, numerical results for the streamline and
temperature contours for various values of the fin inclina-
tion angle e, fin dimensionless length L, solid-to-fluid ther-
mal conductivity ratio jfp, and the Rayleigh number Ra
will be reported. In addition, the effects of jfp and L on
the change of the extreme dimensionless stream function
Dw and the maximum dimensionless temperature hmax will
be shown and analyzed. Furthermore, representative
results for the local and average Nusselt numbers (i.e.,
Nu and Nu) for various conditions will be presented and
discussed. All results are computed for enclosure wall
dimensionless thickness xe = 0.05, enclosure wall thermal
conductivity ratio je = 1, fin dimensionless width xf =
0.01, pipe dimensionless diameter D = 0.2, and pipe
dimensionless thickness xp = 0.01. The Prandtl number
throughout the current study is set to 0.7 in accordance
with the works of Acharya [4], Shim and Hyun [11] and
Oztop and Bilgen [10] who employed the same Prandtl
number value in their respective works on natural convec-
tion cavities with uniformly-distributed internal heat
generation.
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Fig. 5 presents steady-state contour plots for the stream-
line and temperature for various values of L and two values
jfp (1 and1) at e = 0�. The flow and thermal contours are
symmetrical to the vertical centerline. The rise of the fluid
due to buoyancy effects caused by internal heat generation
and the consequent falling of the fluid on the enclosure
walls and finned pipe surface creates multi-cellular vortices
structure. It is observed that the addition of fins increases
the cooling effect and that the maximum temperature
decreases as the fin length increases. Furthermore, the
strength of the relation between the finned pipe cooling
effect and fin length is directly related to jfp. In other
words, hmax decreases as L increases at steeper rate for
jfp =1 than that for jfp = 1. On the other hand, the pres-
Fig. 7. Effects of e on the contour maps of the streamlines and isotherms
for jfp =1, RaE = 105, RaI = 107, and L = 0.20.
ence of fins presents obstacle to the flow caused by the ther-
mal buoyancy effect. The strength of the streamlines Dw is
related to L in a compound manner. While longer fins
mean stronger obstruction to natural convection induced
flow, increasing L increases the cooling effect (i.e. driving
potential) and creates local vortices including less mass of
fluid. In general, Dw is inversely related to L for jfp = 1
and 1 with an exception for jfp = 1 and L = 0.2.

The effects of jfp on the flow and temperature distribu-
tion for L = 0.05 and 0.35, e = 0�, RaE = 105, and
RaI = 107 was studied by monitoring Dw and hmax as
shown in Fig. 6. In general, the values of Dw increase while
the values of hmax decrease approaching asymptotic values
as jfp increases. Clearly, both Dw and hmax have fixed
values for jfp P 103 which is very common in heat
exchangers. In addition, as mentioned before, both Dw
and hmax decrease as the fin length L increases. For
L = 0.35, it is observed that Dw increases reaching a max-
imum at jfp = 102 and then decreases to approach the cor-
responding asymptotic value as jfp is increased further.

The effects of e on the contour maps of the streamlines
and isotherms for L = 0.2, jfp =1, RaE = 105, and
RaI = 107 are presented in Fig. 7. It is observed that the
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flow streamlines show a complex interacting multi-cellular
phenomenon as e is increased. In addition, the contour
plots for the streamlines and isotherms for e = 15� are
the mirror images of those corresponding to e = 75� with
respect to a vertical side of the enclosure. A similar relation
exists between the contours plots for e = 30� and e = 60�
while the contour maps for e = 45� are symmetrical with
respect to the vertical centerline.

Fig. 8 depicts the changes in the values of Dw and hmax

that are brought about by changing the values of e and L.
As shown by this figure, the values of Dw decrease from
e = 0� to e = 45� and then increase in a mirror way from
e = 45� to e = 90� (i.e. e = 0�). The profiles of hmax are also
symmetrical with respect to hmax value at e = 45�. For
L = 0.05 the peak value of hmax occurs at e = 45�, while
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The heat transfer behavior in the enclosure under con-

sideration can be explored by the heat flux distributions
on the solid–fluid interface. For the current domain two
solid–fluid interfaces can be distinguished: the interface
between the enclosure walls and the fluid, and the interface
between the finned pipe and the fluid. While it is usually
desired to increase heat flow (i.e. Nusselt number) at the
latter interface, different targets are possible for the heat
transfer between the fluid and enclosure walls. In fact, for
some applications, the required category for heat flow
across the enclosure wall–fluid interface may be dependent
on the direction of heat flow.
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The heat transfer behavior in the enclosure under con-
sideration can be explored by the heat flux distributions
on the solid–fluid interfaces. Fig. 9 presents the local Nus-
selt number Nu profiles at the finned pipe interface with the
cavity Nufp and at the enclosure wall–cavity interface Nue

for L = 0.20, j =1, RaE = 105, RaI = 107, and different
values of e. For clarity, Nu profiles for e = 60� and 75�
are not included in the figure as they can be predicted
directly from Nu profiles for e = 30� and 15�, respectively,
due to the symmetrical behavior shown in Fig. 7 between
each couple of angles. The Nufp profiles start at the upper
tip of the right fin, while the Nue profiles start from the
lower right corner of the cavity as shown in Fig. 1 and
all profiles are in counter-clockwise direction. The fin seg-
ments can be easily distinguished from the Nufp profiles,
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Fig. 10. Effects of e and L on (a) Nufp, (b) Nue, and (c) Nuin, for j =1,
RaE = 105, and RaI = 107.
and the enclosure edges can also be recognized from the
Nue profiles. For e = 0�, the Nufp profile is symmetrical
with respect to the centerline passing through the upper
and lower fins. This is in accordance with the symmetrical
contour maps of the streamlines and isotherms for e = 0�
shown in Fig. 5. The relative position of the Nufp profiles
is indicated by the arrows showing the order of the profiles
in ascending sorting. In general, the upper the segment of
the finned pipe (i.e. fin or pipe section), the higher the Nufp

value. Hence, when e causes the rising of a segment, its
associated Nufp value usually increases and visa versa.
The exception is when e causes better local fluid flow, such
as the case at the pipe sector between the left and bottom
fins where the local Nufp value is maximum at e = 30� then
e = 45�, 0�, and 15�. On the other hand, the Nue profile for
e = 0� is symmetrical with respect to Se = 1.5 or 3.5 as indi-
cated in Fig. 5. Furthermore, the Nue value is strongly
related to e as can be depicted from the various Nue profiles
presented.

The effects of L and e on the average Nusselt number Nu
at the solid–fluid interfaces are illustrated in Fig. 10. Three
values of Nu are monitored: the value of Nu at the enclosure
wall–cavity interface Nue, the value of Nu at the finned
pipe–cavity interface Nufp, and the value of Nu at the inter-
nal surface of the finned pipe Nuin. The dependence of Nu
on L is stronger than that on e for the three monitored
boundaries. Furthermore, increasing the value of L reduces
the heat flow rate between the cavity and outside (i.e. Nue)
and intensifies the heat flow rate between the cavity and the
fluid inside the pipe (i.e. Nuin). Despite that for steady state
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results
R Z

0
ðoh=oN fpÞN fp¼0 dSfp ¼

R pD
0
ðoh=oNinÞN in¼0 dSin, the

Nufp response to an increase in L is contrary to the
response of Nuin. This is because 1/pD is independent of
L, while as L increases, 1/Z decreases faster than the rise
in
R Z

0
ðoh=oNfpÞN fp¼0dSfp. This explains why Nufp and Nuin

are inversely and directly related to L, respectively.
Finally, Fig. 11 depicts the influence of the external to

internal Rayleigh numbers ratio (i.e. RaEI = RaE/RaI) on
the three average Nusselt numbers (i.e. Nufp, Nue, and
Nuin) for j =1, e = 45� and L = 0.2. In Fig. 11a, RaI was
fixed at 107 and RaE was varied from 103 to 107. However,
in Fig. 11b, RaE was assigned to 105 and RaI was varied
from 105 to 109. By inspecting Eq. (4), one observes that
increasing the ratio RaEI results in reductions in the heat
generation effect and vice versa. This should be considered
in interpreting the effects of RaEI on Nufp, Nue and Nuin. It
is clearly seen from these figures that as the ratio RaEI

increases, all of Nufp, Nue and Nuin decrease each approach-
ing asymptotically a fixed value at RaEI = 1. Since L is
constant, the ratio between Nufp and Nuin is constant in both
figures, and both change at similar rates with increases in
the value of RaEI. However, although the trend of Nue is
similar to those of Nufp and Nuin as mentioned above, its rate
of decrease as RaEI increases is much faster and the asymp-
totic value is reached at RaEI = 0.01 and higher.

5. Conclusions

Conjugate natural convection heat transfer in a square
enclosure having thick walls and encompasses a finned pipe
at its center was studied numerically. The governing equa-
tions for this investigation were put in the dimensionless
formulation and were solved by the finite-volume tech-
nique. Graphical results for the streamline and temperature
contours for several parametric conditions were presented
and discussed. It is concluded that the maximum tempera-
ture and extreme stream function difference can be con-
trolled through the finned pipe inclination angle and fins
length. It was also found that the finned pipe inclination
angle, fins length, and external and internal Rayleigh
numbers have significant effects on the local and average
Nusselt number at the enclosure wall-cavity and finned
pipe–cavity interfaces. The presence of fins had two differ-
ent effects, restraining the fluid flow and increasing the heat
transfer rate through the cavity and its surrounding solid–
fluid interfaces. Therefore, in design applications, it is
possible to control heat transfer between the cavity and
its surrounding boundary by proper selection of both
finned pipe inclination angle and fins length based on the
associated Prandtl number, the enclosure wall thickness
and thermal conductivity, fin width and thermal conductiv-
ity, pipe diameter, pipe thickness and thermal conductivity,
and internal and external Rayleigh numbers.
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